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Self-consistent derivation of subgrid stresses for large-scale fluid equations

Fernando O. Minotti
Departamento de Fı´sica, Instituto de Fı´sica del Plasma, INFIP-CONICET, Universidad de Buenos Aires, 1428 Buenos Aires, Arge

~Received 14 July 1999!

A self-consistent procedure for deriving subgrid scale models for a complex system of equations is pre-
sented. When applied to the Navier-Stokes equation for incompressible flow it reproduces the differential
version of the stress-similarity model with a correct coefficient. As an example the complete system of
equations is derived for an ocean global circulation model.

PACS number~s!: 47.27.Eq, 47.27.Ak
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I. INTRODUCTION

Numerical simulations of high-Reynolds-number flow
usually require one to limit the scales resolved by the
merical scheme to the largest ones, while modeling the ef
of the small unresolved scales in the form of subgrid sc
stresses~SGSS! acting on the resolved flow. One of the ma
objectives of this so called large-eddy simulation approac
to model the SGSS in terms of the resolved variables o
~see@1# for a recent review!. The usual approach to deriv
SGSS models is to describe the effect of the small scale
as that of a statistically averaged turbulent flow, whose ch
acteristics are determined by the instantaneous large s
flow ~a very clear and self-contained application is given
@2#!. This technique allows well developed statistical turb
lence theories to be used~see@3# for a theory applicable to
complex systems!, and it is seen that, under certain cond
tions @4#, it gives correct large-scale flow statistics. Anoth
approach that shows the highest correlations between m
eled and real SGSS is given by the similarity models@5#,
derived not from statistical theories but from the observat
~in numerical simulations and experiments! of certain simi-
larities between different scales of the flow~see @6# for a
related, alternative approach!.

The purpose of the present work is to present a com
mentary approach, that does not includes neither statis
theories nor scale similarity assumptions, in which the SG
are derived directly from the flow equations. This is partic
larly useful in the application to complex systems of flu
equations, such as those appearing in astrophysics and
physics, for which no statistical theories of turbulence ha
been yet developed, and/or where no clear evidence of s
larity behavior exists.

The two main ingredients are~i! a nonstandard definition
of fluctuations~originally developed by Schumann@7#! that
avoids the appearance of non-Reynolds-like SGSS, and~ii !
the solution of a scaling relation~not necessarily a similarity
one! between SGSS, derived from the expression of G
mano’s identity@8#, applied to the SGSS determined by t
fluctuations defined in~i!.

Approximations enter in the derivation and in the soluti
of the scaling relation mentioned in~ii !, and reduce to as
suming that the large scale flow is spatially smooth so t
the accuracy of the final expressions can be quantified
terms of the ratio of the smallest resolved scale to the sp
scale of variation of the large-scale flow. At the lowest no
PRE 611063-651X/2000/61~1!/429~6!/$15.00
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trivial level of approximation the formalism gives a ver
simple general relation applicable to different systems
equations that, for the case of the Navier-Stokes~NS! equa-
tions, reproduces the differential version of the similar
model with a correct numerical coefficient.

II. FORMALISM

To introduce the technique it is convenient to conside
relatively simple system, the NS equations for an isotherm
incompressible fluid:

]v

]t
1~v•“ !v52

1

r
“p1n¹2v, “•v50, ~1!

wherev is the velocity field,r is the mass density, assume
uniform, n the kinematic viscosity, andp the pressure.

In order to deal with smooth magnitudes and to ma
explicit the SGSS it is advantageous to filter Eqs.~1! @9#.
Among all possible filters it will prove convenient, due to i
analytical simplicity, to use a top-hat filter defined by

A~X,t !5^a~x,t !&X5
1

DVE a~x,t !dV, ~2!

where X5^x&X denotes the center of the volumeDV, and
a(x,t) is any field variable function of the space coordinatex
and of the timet. Applying the approach of Schumann@7# to
avoid the generation of Leonard and cross terms@10#, the
fluctuations aredefinedas the difference

da~X,x,t !5a~x,t !2A~X,t !. ~3!

Note that fluctuations depend on both independent varia
x and X; the usual definition corresponds tox5X. Taking
the derivative of Eq.~2! with respect toX, it is readily seen
that

]A

]X
5 K ]a

]xL
X

. ~4!

Moreover, the following relations are immediately seen
hold:

^A~X!&X5A~X!, ^da~X,x,t !A~X!&X50. ~5!
429 ©2000 The American Physical Society
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430 PRE 61FERNANDO O. MINOTTI
That is, definitions~2! and ~3! lead to averages that satis
Reynolds’ postulates, resulting in neither Leonard nor cr
terms@10#. The only proviso for this to hold is that the av
erages in Eq.~5! must be centered at the same pointX on
which the magnitudes to be averaged depend. This is
essential condition that, in the derivations to follow, leads
the particular expressions to be obtained for the SGSS. W
a numerical discretization procedure is implemented, po
X are identified with fixed grid points and the averages
then over volumes fixed in space, which results in the ‘‘vol-
ume based procedure’’ used in @7#. For the purpose of deriv
ing expressions for the SGSS,X is considered as a continu
ous variable independent ofx, and the condition of averagin
around the sameX on which fluctuations depend must b
observed accordingly.

Averaging of Eq.~1! is then very simple and leads to

]V

]t
1~V•“X!V52

1

r
“XP1n¹X

2V1“X•t,

“X•V50, ~6!

where capital letters denote averages of the field represe
by the corresponding lower-case letters, and spatial der
tives are all with respect toX. The SGSS are~time depen-
dence will be henceforth not indicated!

t~X!52^dv~X,x!dv~X,x!&X . ~7!

To obtain an equation fort we now derive a particula
expression of Germano’s identity@8# for the filter ~2! and
fluctuations~3!. For this, consider a second average ove
larger volume of valueDV852dDV, whered is the space
dimension, obtained by doubling the linear scale of the v
ume DV. The integral overDV8 centered atX can be de-
composed intoN52d subintegrals over equal volumesDV
centered atX i[X1dX i , with i running from 1 toN. In this
way, denoting with a prime the averages over the volu
DV8, we can write

A8~X!5
1

DV8
(
i 51

N

DV^a~x!&Xi5
1

N (
i 51

N

A~X i !.

By taking a as any component ofv we immediately obtain

V8~X!5
1

N (
i 51

N

V~X i !, ~8!

while if we take asa any component of the tensor@v(x)
2V8(X)#@v(x…2V8(X)#, and inside each average aroundX i

we write the velocity asv(x…5V(X i)1dv(X i ,x), the follow-
ing form of Germano’s identity is readily obtained:

t8~X!5
1

N (
i 51

N

$t~X i !2@V~X i !2V8~X!#@V~X i !2V8~X!#%.

~9!

We now derive approximate differential versions of t
exact relations~8! and ~9!, taking advantage of the smooth
s

an
o
en
ts
e

ted
a-

a

l-

e

ness of the averaged fields. Taylor expandingt andV about
their values atX i we write (A denotes any component oft or
V)

A~X i !5A~X!1
]A

]Xp
dXp

i 1
1

2

]2A

]Xp]Xq
dXp

i dXq
i 1•••,

~10!

where all derivatives are evaluated atX, and summation over
repeated subindexes is assumed. In the case that the vol
DV andDV8 are parallelepipeds with sides parallel to Ca
tesian axes, the following relations hold:

(
i 51

N

dX i5(
i 51

N

dX idX idX i50, ~11a!

1

N (
i 51

N

dXp
i dXq

i 5
D (p)

2

4
dpq , ~11b!

wheredpq is Kronecker’s delta, andD (p) is the length of the
side parallel to the axisXp .

Using Eqs.~11a! and ~11b! the expression of Eq.~8! is
particularly simple for a cubic volumeDV of sideD

V8~X!5V~X!1
D2

8
¹X

2V1O~D4!. ~12!

Using Eqs.~10!, ~11a!, ~11b!, and ~12!, the identity~9! can
be written as

t lm8 5t lm1
D2

8
¹X

2t lm2
D2

4

]Vl

]Xp

]Vm

]Xp
1O~D4!. ~13!

In these expressions the orderD of approximation refers ac
tually to D/LX , whereLX is the spatial scale of variation o
averaged quantities.

The mathematical form of Eqs.~12! and ~13! is rather
general. For generic fields denoted by lower-case let
a(x), b(x), etc., with top-hat average~2! about X repre-
sented by the corresponding upper-case lettersA(X), B(X),
etc., and fluctuation~3! da(X,x), db(X,x), etc., a derivation
completely analogous to that of Eqs.~12! and ~13! leads to

A8~X!5A~X!1
D2

8
¹X

2A1O~D4!, ~14!

and, for the average of two fluctuating fields,

^da~X,x!db~X,x!&X8 5^da~X,x!db~X,x!&X

1
D2

8
¹X

2 ^da~X,x!db~X,x!&X

1
D2

4
¹XA•¹XB1O~D4!. ~15!

Analogously, the average of three fluctuating quantities
be calculated to be
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^dadbdc&X8 5^dadbdc&X1
D2

8
“X

2 ^dadbdc&X

1
D2

4
~“XA•“X^dbdc&X1“XB•“X^dadc&X

1“XC•“X^dadb&X!1O~D4!. ~16!

We then see that in Eqs.~15! and~16! the relation between a
fluctuation averagef over a cube of side 2D and that over a
cube of sideD is

f 85 f 1
D2

8
¹X

2 f 1D2q1O~D4!, ~17!

whereq is prescribed independently off.
Finally, to obtain a closed equation for the SGSS, we n

propose to solve Eq.~17! approximately considering thatf
andq are not only functions ofX but also of the scaleD of
the filter.

Since f 8 corresponds to twice the value of the scaleD of
f, by Taylor expandingf 8 aboutD we can write

f 85 f 1D
] f

]D
1

1

2
D2

]2f

]D2
1O~D3!, ~18!

where all derivatives are evaluated at the scaleD.
In Eq. ~18! the expansion is made in terms ofD/Ll ,

whereLl can be estimated as 1/(] ln f/]l). In the Appendix
it is shown that the orderD/Ll of approximation in Eq.~18!
coincides with the same order inD/LX ; for this reason we
will hitherto refer simply withD to the D/LX order of ap-
proximation.

The idea is now to retain terms only up to orderD2 both
in Eqs. ~17! and ~18!, and solve the resulting partial differ
ential equation:

D
] f

]D
1

1

2
D2

]2f

]D2
5

D2

8
¹X

2 f 1D2q~X,D!. ~19!

It is convenient to use a nondimensional variablel
5D/D0, with D0 a fixed reference scale, to write Eq.~19! as

]2f

]l2
1

2

l

] f

]l
2

D0
2

4
¹X

2 f 52D0
2q~X,l!. ~20!

Sincef is the average of fluctuations, it is easily seen thaf
tends to zero as the scale of the filter decreases. Fo
transforming with respect to the space coordinate,

f ~X,l!5
1

~2p!dE eiK•X f̃ ~K ,l!ddK,

q~X,l!5
1

~2p!dE eiK–Xq̃~K ,l!ddK,

with d the dimensionality of space, the Fourier transform
the exact solution to Eq.~20! that satisfiesf (X,l50)50 is
readily found to be
ier

f

f̃ ~k,l!5
D0

2

lkE0

l

sin@k~l2l8!#l8q̃~k,l8!dl8, ~21!

where the dimensionless wave vectork is defined as

k5
D0

2
K , k5uku.

Consider now the ‘‘source’’q̃(k,l8); it represents the
contribution to wave numberk of averages over volumes o
~dimensionless! scalel8. Since f̃ (k,l) is the Fourier trans-
form of an average over scalesl, the relevant wave number
are those smaller than~approximately! l21; but for these
values of wave numbers an average over scalesl8 has ap-
proximately the same value for anyl8,l ~intuitively, the
large scale component of a filtered magnitude is not sens
to the precise scale of the filter if the latter is sufficien
small!; that is,

q̃~k,l8!.q̃~k,l!. ~22!

In this way, the large scale solution of Eq.~21! can be ap-
proximated by

f̃ ~k,l!5
D0

2q̃~k,l!

lk E
0

l

sin@k~l2l8!#l8dl8

5
D0

2q̃~k,l!

k2 F12
sin~kl!

kl G . ~23!

The function multiplyingq̃(k,l) in Eq. ~23! has a very rap-
idly convergent series expansion inkl:

1

x2 F12
sin~x!

x G5
1

6
2

x2

120
1

x4

5040
1O~x6!,

which allows to Fourier transform~23! very easily up to
terms consistent with the approximation in Eqs.~17! and
~18! to write ~usinglD05D)

f ~X,l!5
D2

6
q~X,l!1O~D3!. ~24!

It is shown in the Appendix that approximation~22! leads to
O(D4) errors in Eq.~24!, so that the error in the latter i
determined by the accuracy of Eq.~18!.

III. APPLICATIONS

For the NS SGSS, comparing Eqs.~13! and ~17! the
q(X,l) is easily identified, and Eq.~24! gives

t lm52
D2

24

]Vl

]Xp

]Vm

]Xp
1O~D3!. ~25!

This expression coincides with a differential version of t
stress-similarity model@5#, with a value of the model con
stantcL50.5 †D in Eq. ~25! is half of that used in@5#‡. The
value estimated in the same reference~adjusted in order to
obtain the right energy dissipation! is cL50.4560.15.
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As an additional example of the applicability of the fo
malism we now derive the complete set of large scale eq
tions for a relatively complex fluid system, a global circul
tion ocean model@11#,

]

]t
@~h1z!u#52“•@~h1z!uu#1“•@n~h1z!“u#

1
t

r
2~h1z!@ f3u1g“z1gu#, ~26a!

]z

]t
52“•@~h1z!u#, ~26b!

where u is the horizontal two-dimensional velocity,“ the
two-dimensional gradient operator,h the resting depth of the
fluid, z the free surface elevation,f the Coriolis force,g the
acceleration of gravity,g the bottom drag coefficient,n the
lateral viscosity,r the density of the fluid, andt the wind
stress acting on the surface. We have chosen this partic
system because it is relatively well known, and at the sa
time sufficiently complex to exemplify many aspects of t
application of the formalism. However, its correspondi
SGSS is not part of any current research.

Denoting the average~2! and fluctuations~3! of z andu
by

z~x!5Z~X!1dz~X,x!, ~27a!

u~x!5U~X!1du~X,x!, ~27b!

wherex is the two-dimensional horizontal coordinate andX
the center of the filter volume~surface in this case!. After
replacing Eqs.~27a! and ~27b! in Eqs. ~26a! and ~26b! and
averaging aroundX one obtains quite easily, thanks to pro
erties~4! and ~5!,

]

]t
@h1Z!U] 52“•@~h1Z!UU#1

t

r
2~h1Z!

3@ f3U1g“Z1gU#

1“•@n~h1Z!“U#1SU , ~28a!

]Z

]t
52“•@~h1Z!U#1SZ , ~28b!

where the SGSS terms are given by

SU52
]

]t
^dzdu&X2“•@~h1Z!^dudu&X1U^dzdu&X

1^dzdu&XU1^dzdudu&X#1“•@n^dz“du&X#

2f3^dzdu&X2g^dz“dz&X2g^dzdu&X , ~29a!

SZ52“•^dzdu&X , ~29b!

where the gradient operator acts on the variableX. In the
averaging process we have assumed thatf, t, g, n, r, andh
are smooth functions of space.

From the general expressions~15! and ~16! we immedi-
ately identify the source termq in the generic relation~17!
a-

lar
e

for every average of fluctuations appearing in Eqs.~29a! and
~29b!, and using Eq.~24! write

^dzdu&X5
D2

24
“Z•“U1O~D3!,

^dudu&X5
D2

24
“U•“U1O~D3!,

^dz“du&X5
D2

24
“Z•“~“U!1O~D3!,

^dz“dz&X5
D2

24
“Z•“~“Z!1O~D3!,

^dzdudu&X5
D2

24
~“Z•¹^dudu&X

12“U•“^dzdu&X!1O~D3!.

As indicated explicitly in Eq.~25!, the scalar product in the
previous expressions corresponds to contracting the ind
generated by the gradient operators.

Although exact, the system~28a!–~29b! is of little practi-
cal use as it stands due to the many terms involved and
appearance of a time derivative in the right hand side of
~29a!, which makes the numerical implementation cumb
some. A more practical system results if one writes Eq.~26a!
in nonconservative form

]u

]t
52u–¹u2f3u2g“z2gu1¹•~n“u!

1n“u•“ ln~h1z!1
t

r~h1z!
,

and in the last two terms the approximationudzu!h1Z is
made in the form

1

h1z
.

1

h1Z S 12
dz

h1ZD .

The resulting large scale equation is

]U

]t
52U–¹U2f3U2g“Z2gU1¹•~n“U!

1n“U•“ ln~h1Z!1
t

r~h1Z!
1SU8 ,

with

SU8 52^~du•“ !du&X1n
^“dz•“du&X

h1Z

1n^dz“du&X•“S 1

h1ZD .

The corresponding model is
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K duk

]du

]xk
L

X

5
D2

24

]Uk

]Xl

]2U

]Xl]Xk
1O~D3!,

K ]dz

]xk

]du

]xk
L

X

5
D2

24

]2Z

]Xl]Xk

]2U

]Xl]Xk
1O~D3!,

K dz
]du

]xk
L

X

5
D2

24

]Z

]Xl

]2U

]Xl]Xk
1O~D3!.

IV. CONCLUSIONS

In conclusion, we have presented a formalism for obta
ing closed large-scale fluid equations easily applicable
complex systems. In the case of the incompressible NS e
tions the formalism reproduces the differential approxim
tion ~to the orderD3) of the similarity model, which has the
highest correlation found ina priori tests. Moreover, the
analytically obtained model constant compares very w
with the empirically determined one. As is the case for m
models~for an exception see Ref.@6#, in which explicit sub-
grid forcing is incorporated into the SGSS!, the presented
formalism is expected to be applicable when the forcing
the flow, given either by explicit body forces or by bounda
conditions, acts at resolved scales only, in such a way
the subgrid scales are excited by nonlinear interacti
among resolved scales. In this case the amplitude of the
resolved scale component of a field does usually remain
ficiently small to produce a smooth large-scale flow.

It is important to note that the particular definitions
fluctuations and corresponding averaging procedure that
to relations~5! ~which are fundamental, in the applications
complex system, to avoid the proliferation of SGSS! do not
preclude the use of statistical theories to help model
SGSS so defined, allowing to complement the formali
presented. However, single-point closures cannot be used
rather two-point closures, as done in@7#.
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APPENDIX

In this Appendix we analyze in some detail the differe
approximations made in the main text, and show that
resulting errors in the final expressions are of orderD3 only.
For notational purposes, if the error in some expression i
orderDp we refer to that expression aso(Dp) accurate. To
begin, consider the simplest average

A~X,l!5^a~x!&X
(l) ,

where the scale dependence has been indicated, and the
hand side is explicitly given by~in d-dimensional space!

^a~x!&X
(l)[

1

~lD0!dEX12lD0/2

X11lD0/2

dx1•••E
Xd2lD0/2

Xd1lD0/2

dxda~x!.

~A1!
-
o
a-
-

ll
t

f

at
s
n-
f-

ad

e

ut

p-

t
e

of

ight

By expressinga(x) in terms of its Fourier transform

a~x!5
1

~2p!dE eiK•xã~K !ddK

5
1

~pD0!dE ei2k•x/D0ã~k!ddk, ~A2!

conveniently written in terms of the dimensionless wave v
tor k5D0K /2, after performing the spatial integral in Eq
~A1! one immediately obtains the Fourier transform of t
average as

Ã~k,l!5ã~k!S~k,l!, ~A3!

where

S~k,l!5
sin~lk1!

lk1
•••

sin~lkd!

lkd
. ~A4!

We now analyze the approximation~18! applied to
A(X,l):

A~X,2l!.A~X,l!1l
]A~X,l!

]l
1

l2

2

]2A~X,l!

]l2

5
1

~pD0!dE ei2k•X/D0ã~k!Sapp~k,2l!ddk,

where, from Eq.~A3!,

Sapp~k,2l!5S~k,l!1l
]S~k,l!

]l
1

l2

2

]2S~k,l!

]l2
.

~A5!

It is now convenient to consider the derivative, easily o
tained from Eq.~A4!,

]S~k,l!

]l
5

S~k,l!

l (
i 51

d

@lki cot~lki !21#.

Taylor expanding the summand we can write

] ln S~k,l!

] ln l
52

l2

3 (
i 51

d

ki
22

l4

45 (
i 51

d

ki
41O~l6k6!.

For the scales ofA(X,l), lk&p/2, the orderk4 and higher
terms can be neglected, which allows a simple integration
yield

S~k,l!5exp~2l2k2/6!, ~A6!

from which

S~k,2l!5exp~22l2k2/3!

5exp~2l2k2/6!

3S 12
l2k2

2
1

l4k4

8
1O~l6k6! D , ~A7!

while, from Eq.~A5!,
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Sapp~k,2l!5exp~2l2k2/6!

3S 12
l2k2

2
1

l4k4

18
1O~l6k6! D . ~A8!

Equations~A7! and~A8! then differ in terms of order (lk)4

@consistent with the approximation leading to Eq.~A6!#,
which means that approximation~18! for simple averages
~A1! is o(D4) accurate.

Similarly, approximation~22! applied to the single aver
age~A1! can be analyzed directly from Eq.~A6! from which
we can write

S~k,l8!5S~k,l!S 11
~l22l82!k2

6
1O~k4! D . ~A9!

For l8<l the second term between brackets is alwa
smaller thanl2k2/6, which, for a sourceq corresponding to a
simple average~A1!, translates to

q~X,l8!5q~X,l!1O~D2!. ~A10!

Since Eq.~21! is of orderD2, approximation~22! leads in
this case too(D4) accurate results in Eq.~24!.

In general, however, both Eqs.~18! and ~22! are applied
to averages more complex than Eq.~A1! @see Eqs.~15! and
~16!#. These averages can always be expressed in term
simple averages of the form~A1! or products thereof, for
instance,

^da~X,x!db~X,x!&X5^a~x!b~x!&X2A~X!B~X!,
~A11!

and

^da~X,x!db~X,x!dc~X,x!&X

5^a~x!b~x!c~x!&X2A~X!^b~x!c~x!&X2B~X!

3^a~x!c~x!&X2C~X!^a~x!b~x!&X

12A~X!B~X!C~X!. ~A12!
s

of

Approximation~18! can now be analyzed term by term
Eqs.~A11! and~A12!. The first term in the right-hand side o
both expressions is an average of the form~A1! so that Eq.
~18! applied to it produceso(D4) accurate results. The res
of the terms are the product of either two or three sim
averages. Let us consider as an example the t
A(X,l)B(X,l), where the scale dependence has been
plicitly indicated. Approximation~18! applied to it is ex-
pressed as

A~X,2l!B~X,2l!5A~X,l!B~X,l!

1l
]

]l
@A~X,l!B~X,l!#

1
l2

2

]2

]l2
@A~X,l!B~X,l!#.

~A13!

Since approximation~18! for simple averages giveso(D4)
accurate results, it can be applied to each term in the l
hand side of Eq.~A13! to evaluate the product at this level o
accuracy. If this is done, and the derivatives in the right-ha
side performed, it is easy to verify that both sides of E
~A13! so evaluated differ in terms of orderD3, that is, ap-
proximation~18! applied to the product of two simple ave
ages giveso(D3) accurate results. The same conclusion
similarly verified for the product of three simple average
leading then too(D3) accurate results for both fluctuatio
averages~A11! and ~A12!.

Analogously, using Eq.~A10! for each simple average, i
is immediately verified that Eq.~A10! is also valid for the
product of two or more simple averages, leading too(D4)
accurate results when approximation~22! is used in Eq.~24!.

The accuracy in the final expressions is then limited to
o(D3) accuracy of approximation~18!.
id
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