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Self-consistent derivation of subgrid stresses for large-scale fluid equations
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A self-consistent procedure for deriving subgrid scale models for a complex system of equations is pre-
sented. When applied to the Navier-Stokes equation for incompressible flow it reproduces the differential
version of the stress-similarity model with a correct coefficient. As an example the complete system of
equations is derived for an ocean global circulation model.

PACS numbep): 47.27.Eq, 47.27.Ak

[. INTRODUCTION trivial level of approximation the formalism gives a very
. . . . simple general relation applicable to different systems of
Numerical simulations of high-Reynolds-number flows equations that, for the case of the Navier-Stokés) equa-

usuglly require one to limit the scales. resolveq by the NU%ons, reproduces the differential version of the similarity
merical scheme to the largest ones, while modeling the effect,,yel with a correct numerical coefficient.

of the small unresolved scales in the form of subgrid scale

stresse$SGSS acting on the resolved flow. One of the main

objectives of this so called large-eddy simulation approach is

to model the SGSS in terms of the resolved variables only To introduce the technique it is convenient to consider a

(see[1] for a recent revieyw The usual approach to derive relatively simple system, the NS equations for an isothermal

SGSS models is to describe the effect of the small scale flowncompressible fluid:

as that of a statistically averaged turbulent flow, whose char-

acteristics are determined by the instantaneous large scale v 1 )

flow (a very clear and self-contained application is given in st (v Vv=- ;Vp“L VWi, Vov=0, (1)

[2]). This technique allows well developed statistical turbu-

lence theories to be usddee[3] for a theory applicable to wherev is the velocity field,p is the mass density, assumed

complex systems and it is seen that, under certain condi- uniform, » the kinematic viscosity, and the pressure.

tions [4], it gives correct large-scale flow statistics. Another In order to deal with smooth magnitudes and to make

approach that shows the highest correlations between moéxplicit the SGSS it is advantageous to filter E¢B. [9].

eled and real SGSS is given by the similarity mod&§  Among all possible filters it will prove convenient, due to its

derived not from statistical theories but from the observatioranalytical simplicity, to use a top-hat filter defined by

(in numerical simulations and experiments certain simi-

larities between different scales of the fldaee[6] for a 1

related, alternative approach A(X,t)=<a(x,t))x=mf a(x,t)dv, 2
The purpose of the present work is to present a comple-

mentgry approach, _that QOes not inplude§ neit.her StatiStiC%herexz(@X denotes the center of the voluraeV, and

theones nor s_cale similarity assumptions, in Wh'_Ch_ the S_GS%(x,t) is any field variable function of the space coordinate

are derived directly from the flow equations. This is particu-, -4 of the time. Applying the approach of Schumatfif to

larly qseful in the application to .CO”TP'GX systems of fluid avoid the generation of Leonard and cross tefdd], the
equations, such as those appearing in astrophysics and 98Qictuations arelefinedas the difference
physics, for which no statistical theories of turbulence have

been yet developed, and/or where no clear evidence of simi- sa(X,x,t)=a(x,t)—A(X,1). &)

Il. FORMALISM

larity behavior exists.
The two main _|ngred|ents ai@) a nonstandard definition Note that fluctuations depend on both independent variables
of flluctuatlons(orlgmally developed by Schumar{ﬁf]) th.at x and X; the usual definition corresponds %&= X. Taking
avoids the appearance of nqn-ReynoIds—Ilkg SGSSZ(ahd the derivative of Eq(2) with respect taX, it is readily seen
the solution of a scaling relatiofmot necessarily a similarity that
one between SGSS, derived from the expression of Ger-
mano’s identity[8], applied to the SGSS determined by the
. - Hp) dA Ja

fluctuations defined iri). _:<_> ] (4)

Approximations enter in the derivation and in the solution X IX[
of the scaling relation mentioned iii), and reduce to as-
suming that the large scale flow is spatially smooth so thaMoreover, the following relations are immediately seen to
the accuracy of the final expressions can be quantified ihold:
terms of the ratio of the smallest resolved scale to the spatial
scale of variation of the large-scale flow. At the lowest non- (A(X))x=A(X), (da(X,x,t)A(X))x=0. (5)
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That is, definitions(2) and (3) lead to averages that satisfy ness of the averaged fields. Taylor expandirandV about

Reynolds’ postulates, resulting in neither Leonard nor crosgheir values aX' we write (A denotes any component efor
terms[10]. The only proviso for this to hold is that the av- v)

erages in Eq(5) must be centered at the same potbn

which the magnitudes to be averaged depend. This is an _ A 2p o
essential condition that, in the derivations to follow, leads to ~ A(X") =A(X)+ X X, + 3 X IX. IXpOXgt+ -+,
the particular expressions to be obtained for the SGSS. When P proa (10
a numerical discretization procedure is implemented, points

X are identified with fixed grid points and the averages ar€vhere all derivatives are evaluatedXgtand summation over

then gver(\j/olumezl}lxed :;].SF[’%CEF’ WT;]Ch results mftl(wjvel—. repeated subindexes is assumed. In the case that the volumes
ume based procedufeised in| 7]. For tNé purpose ot deriv=— v, ang Ay’ are parallelepipeds with sides parallel to Car-

ing expressions for the SGSXK,is considered as a continu- tesian axes, the following relations hold:
ous variable independent »f and the condition of averaging ' '
around the sam& on which fluctuations depend must be N
observed accordingly.

N
. . . SX1=2, X1 6Xi X1 =0, (113
Averaging of Eq.(1) is then very simple and leads to i i=1

=

N 1 ,
E_}—(VVX)V__;VXP_FVVXV_}—VXT’ (11b)

. Ay
i i p
Z}l SXpXy= 4" Spa

Zl -

Vx- V=0, ©®) where g, is Kronecker’s delta, and  is the length of the

. ) side parallel to the axiX, .
where capital letters denote averages of the field represente Using Egs.(118 and (11b) the expression of Eq®) is

by the corresponding lower-case letters, and spatial deriva-_ . . ' .
tives are all with respect t&. The SGSS arétime depen- apartlcularly simple for a cubic volumaV of side A

dence will be henceforth not indicated 2

A
V' (X)=V(X)+ —=V2V+0(A%). (12)
HX) == (SV(X,X) V(X X)) - (7) 8 X

To obtain an equation for we now derive a particular Using Egs.(10), (114, (11b), and(12), the identity(9) can
expression of Germano’s identif] for the filter (2) and ~ be written as
fluctuations(3). For this, consider a second average over a
larger volume of value\V’'=29AV, whered is the space . A, A% oV, aVy,
dimension, obtained by doubling the linear scale of the vol- Tim= Tim ™ g~ VXTIm ™ 7~ X, X,
ume AV. The integral overAV' centered aX can be de-
composed intd=2¢ subintegrals over equal volumésV  |n these expressions the orderof approximation refers ac-
centered aX'=X+ oX', with i running from 1 toN. In this  tually to A/L, whereLy is the spatial scale of variation of
way, denoting with a prime the averages over the volumewyeraged quantities.
AV’', we can write The mathematical form of Eq$12) and (13) is rather
general. For generic fields denoted by lower-case letters
1 N 1N . a(x), b(x), etc., with top-hat averag&) about X repre-
A (X)= V3 ;1 AV{a(x))xi= i; AXY. sented by the corresponding upper-case lefg), B(X),
etc., and fluctuatio3) sa(X,x), sb(X,x), etc., a derivation
completely analogous to that of Eq42) and (13) leads to

+0(A%. (13

By taking a as any component of we immediately obtain

2

! 4 = A_ 2 4
V’(X)=%;l V(XD), ) A'(X)=A(X) + 5 VxA+O(A), (14)

o and, for the average of two fluctuating fields,
while if we take asa any component of the tensdw(x)

—V'(X)][v(x)—V'(X)], and inside each average arouxid '

we write the velocity as(x)=V(X') + 8v(X',x), the follow- (8a(X, ) 3(X,X) ) ={ 5a(X,X) Sb(X,X))x

ing form of Germano’s identity is readily obtained: A2
+EV§<5a(x,x)5b(x,x)>X

1 . _ _
7 (X)= 5 2 {7X) = VX)) =V O)IVX) =V (X)]}. A? .
=1 o +— VXA VxB+O(A%). (15)

We now derive approximate differential versions of the Analogously, the average of three fluctuating quantities can
exact relationg8) and(9), taking advantage of the smooth- be calculated to be
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AZ
(sashéc)y=(sashasc)y+ EVi(éaéb 5C)x

AZ

+V4C-Vy(8adb)y)+O(A%). (16)

We then see that in Eq&l5) and(16) the relation between a
fluctuation averagé over a cube of side 2 and that over a
cube of sideA is

2

’ A 2 2 4
f =f+§VXf+A q+O(A%), (17)

whereq is prescribed independently &f
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AZ

Tk, M= S|r{k(7\—)\’)])\’<~:|(k,)\’)d)\’, (22)

where the dimensionless wave veckors defined as

A
O,

k=3

k=|K|.

Consider now the “source’q(k,\'); it represents the
contribution to wave numbeék of averages over volumes of
(dimensionlessscalen’. Sincef(k,\) is the Fourier trans-
form of an average over scalesthe relevant wave numbers
are those smaller thatapproximately A ~*; but for these
values of wave numbers an average over scalebas ap-
proximately the same value for any <\ (intuitively, the

Finally, to obtain a closed equation for the SGSS, we nowarge scale component of a filtered magnitude is not sensitive

propose to solve Eq.17) approximately considering thdt
andq are not only functions oK but also of the scald of
the filter.

Sincef’ corresponds to twice the value of the scAlef
f, by Taylor expandind’ aboutA we can write

(18

where all derivatives are evaluated at the scale

In Eqg. (18) the expansion is made in terms AfL,,
whereL, can be estimated as #/h f/o\). In the Appendix
it is shown that the ordek/L, of approximation in Eq(18)
coincides with the same order /Ly ; for this reason we
will hitherto refer simply withA to the A/Ly order of ap-
proximation.

The idea is now to retain terms only up to ordet both
in Egs.(17) and(18), and solve the resulting partial differ-
ential equation:

of 1 Lt A,
Aot oA = VR A(X,A).

AN 27 A2 (19

It is convenient to use a nondimensional variable
=A/A,, with A a fixed reference scale, to write E49) as

2 of A2

o*f 0o 5

Sincef is the average of fluctuations, it is easily seen that

tends to zero as the scale of the filter decreases. Fourier

transforming with respect to the space coordinate,

f(X,N)=

E )df e XF (K, \)d9K,
a

a(X,\)= feiK'xa(K,)\)ddK,

(2m)¢

to the precise scale of the filter if the latter is sufficiently
smal)); that is,

q(k,\")=q(k,\).

In this way, the large scale solution of E®Q1) can be ap-
proximated by

(22

~ oq

f(k\)= (&, )f Sik(A—=X")I\"dN

_AS&(k,m[l_

sin(k\)
k2 '

K\ 3

The function multiplyingq(k,\) in Eq. (23) has a very rap-
idly convergent series expansionki:

B sin(x)

X

1 X2 x4
=6 120" 5040

1

5 —— +0(x%),
X

which allows to Fourier transforni23) very easily up to
terms consistent with the approximation in E¢%7) and
(18) to write (usingAAg=A)
AZ

f(X,A)=gq(X,>\)+O(A3)- (24)
It is shown in the Appendix that approximati¢22) leads to
O(A% errors in Eq.(24), so that the error in the latter is
determined by the accuracy of Ed.8).

IIl. APPLICATIONS

For the NS SGSS, comparing Eqa3) and (17) the
q(X,\) is easily identified, and Edq24) gives

A? oV, Vp,

249X, IXp

Tim=— +0(A3). (25)

This expression coincides with a differential version of the

stress-similarity mode]5], with a value of the model con-

with d the dimensionality of space, the Fourier transform ofstantc, =0.5[A in Eq. (25) is half of that used if5]]. The

the exact solution to Eq20) that satisfied(X,A=0)=0 is
readily found to be

value estimated in the same refererfadjusted in order to

obtain the right energy dissipatipis ¢, =0.45+0.15.
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As an additional example of the applicability of the for- for every average of fluctuations appearing in E893 and
malism we now derive the complete set of large scale equa29b), and using Eq(24) write

tions for a relatively complex fluid system, a global circula-

tion ocean mode11],

%[(th{)u]: =V [(h+uu]+V - [v(h+{)Vu]

+ %—(h+§)[f>< u+gVZ+yu], (269

29
—=—V-[(h+u],

P (26b)

whereu is the horizontal two-dimensional velocity, the

two-dimensional gradient operatdrthe resting depth of the

fluid, ¢ the free surface elevatiohthe Coriolis forceg the
acceleration of gravityy the bottom drag coefficient; the

AZ
<6§6u>x=2—4VZ~VU+O(A3),

AZ
<5u5u>X=ﬂVU-VU+O(A3),

AZ
<5§V5u>xzﬂvz-V(VU)+O(A3),

AZ
(8¢V 5g>X=2—4vz. V(VZ)+0(A?),

AZ
(5§5u5u>x=ﬂ(VZ-V<5u5u>x

lateral viscosity,p the density of the fluid, and the wind
stress acting on the surface. We have chosen this particular +2VU- V(8¢6u)y)+O(A?)
system because it is relatively well known, and at the same X '

time sufficiently complex to exemplify many aspects of theAs indicated explicitly in Eq(25), the scalar product in the

g%pgga_tlon ?f thte ;ormallsm. I:owever,hlts CO”eSpOnd'ngprevious expressions corresponds to contracting the indices
IS Ot part of any current research. generated by the gradient operators.

Denoting the average?) and fluctuations3) of £ andu Although exact, the systefi289—(29b) is of little practi-

by cal use as it stands due to the many terms involved and the
—7(X)+ 8¢(X 27 appearance of a time derivativg in tlhe right han_d side of Eq.
E09=2(X) + 8¢(X,x), @73 (293, which makes the numerical implementation cumber-
u(x)=U(X) + Su(X,x), 27 some. A more practical system results if one writes 263
in nonconservative form
wherex is the two-dimensional horizontal coordinate axd
the center of the filter volumésurface in this cage After Ju_ B B B _
replacing Eqs(279 and (27b) in Egs. (263 and (26b) and at U-Vu=fXu=gVi—yutv.(»Vu)
averaging aroun& one obtains quite easily, thanks to prop- .
erties(4) and(5), F VUV In(h+ )+
VIOt Ly

and in the last two terms the approximatipf¢|<h+Z is
made in the form

J t
FIPH2UI= =V [(h+2)UU]+ — —(h+2)

X[fxU+gVZ+ U]
+V-[v(h+2Z)VU]+S,, (283 11, ¥
hiz htz|* h+z)
0Z
- =~V [(h+2)U]+S,, (28D The resulting large scale equation is

i Ju

where the SGSS terms are given by - _U-VU—fXU—gVZ— yU+ V- (»VU)
J

Su= " =-(8¢SU)x— V- [(h+2Z)(Sudu)x+U(5¢ Su) "
Jt FPVUVIn(h+2)+ s+ S,

+(828U) U+ (5L8udUY]+V -[ {5V sU)] P

—FX(8L8uU)x—g(SLV 6L)x— ¥(SLdu)x
S;=—V(8Ldu)x,

where the gradient operator acts on the variablein the
averaging process we have assumedthsty, v, p, andh
are smooth functions of space.

From the general expressiofs5) and (16) we immedi-
ately identify the source term in the generic relatiorf17)

(29D (VoL Vau)x

S)=—((8u-V)du)y+ v

h+2zZ

The corresponding model is
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adu A% 9U, 4°U . By expressinga(x) in terms of its Fourier transform
< Uk axk>x_24 X, <9X|<9xk+o(A )
a(x)= feiK'X?a‘(K)ddK
<a5§ &5u> A2 27 U (2m)°
— o] =22 9o o FOM),
X X[ 24 IX 9K XX 1
= J el 2 ¥Aoq(k)dk, (A2)
adu\ A% 9z G (mAg)*
P ST o -
X[y 24 9K IX X conveniently written in terms of the dimensionless wave vec-
tor k=AyK/2, after performing the spatial integral in Eg.
IV. CONCLUSIONS (A1) one immediately obtains the Fourier transform of the
average as
In conclusion, we have presented a formalism for obtain- _ _
ing closed large-scale fluid equations easily applicable to A(k,N)=a(k)S(k,\), (A3)
complex systems. In the case of the incompressible NS equa-
tions the formalism reproduces the differential approxima-where
tion (to the orderA®) of the similarity model, which has the sin(AKy) sin(AKy)
highest correlation found im priori tests. Moreover, the S(k,\)= Yo @ (A4)
analytically obtained model constant compares very well Nk MKy

with the empirically determined one. As is the case for most We now analyze the approximatiofd8 applied to
models(for an exception see Rdf6], in which explicit sub- ACX M) y PP PP
grid forcing is incorporated into the SGEShe presented (XA):
formalism is expected to be applicable when the forcing of 2 .
the flow, given either by explicit body forces or by boundary AX,20) =A(X,\)+\ IAXN) + )‘_ IAXN)
conditions, acts at resolved scales only, in such a way that 2 2 IN?
the subgrid scales are excited by nonlinear interactions
among resolved scales. In this case the amplitude of the un- 1
resolved scale component of a field does usually remain suf- N (mAg)¢
ficiently small to produce a smooth large-scale flow.

It is important to note that the particular definitions of where, from Eq(A3),
fluctuations and corresponding averaging procedure that lead

f eiz"'X’Aoa(k)Sap,{k,Zk)ddk,

to relations(5) (which are fundamental, in the applications to IS(k,N) A% 92S(k,\)
complex system, to avoid the proliferation of SGS® not Sapd ki 2M) =S(k, M) +A N 2 a2
preclude the use of statistical theories to help model the (A5)

SGSS so defined, allowing to complement the formalism
presented. However, single-point closures cannot be used biatis now convenient to consider the derivative, easily ob-

rather two-point closures, as done[if. tained from Eq.(A4),
d
dS(k,\ K,\
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APPENDIX T am sy

ainS(k,\)  \?
aln\ 3

In this Appendix we analyze in some detail the different 4 )
approximations made in the main text, and show that th&©r the scales oA(X,\), Nk=m/2, the ordek” and higher

resulting errors in the final expressions are of orieronly.  (€'MS can be neglected, which allows a simple integration to
For notational purposes, if the error in some expression is ofi€ld

order AP we refer to that expression agAP) accurate. To S(k,\) =exp — \2k%/6) (AB)
begin, consider the simplest average ’ ’

AX N =(a(x)){), from which

S(k,2\ ) =exp( — 2\ %k?/3)
where the scale dependence has been indicated, and the right

hand side is explicitly given byin d-dimensional spage =exp(—\?k?/6)
A%KZ NKA
1 Xq+NAg/2 Xyq+NAg/2 x| 1— + +0 )\6k6 , A7
(a(x))&”z—f F % ax f e dxga(x). 2 8 ( ) (A7)
(M) 9 x;—rag2 Xg—\Aol2

(A1) while, from Eq.(A5),
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Sapd K. 2\) = exp( — \?k?/6)
A%k2 NAK?

2 "8
Equations(A7) and (A8) then differ in terms of orderNk)*
[consistent with the approximation leading to EH#6)],
which means that approximatiofi8) for simple averages
(A1) is o(A%) accurate.

Similarly, approximation(22) applied to the single aver-

age(Al) can be analyzed directly from EGA6) from which
we can write

x| 1— +0O(N\%k®)|. (A8)
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Approximation(18) can now be analyzed term by term in
Egs.(Al11) and(A12). The first term in the right-hand side of
both expressions is an average of the fgAi) so that Eq.
(18) applied to it produces(A*) accurate results. The rest
of the terms are the product of either two or three simple
averages. Let us consider as an example the term
A(X,N)B(X,\), where the scale dependence has been ex-
plicitly indicated. Approximation(18) applied to it is ex-
pressed as

ACX,20)B(X,20) = A(X,N)B(X,\)

, ()\2_)\!2)k2 4 a
S(k,\")=S(k,\)| 1+ T+O(k ). (A9) +7\5[A(X,)\)B(X,)\)]
For A<\ the second term between brackets is always N2 32
smaller tham ?k?/6, which, for a source corresponding to a +— —[AX,N)B(X,\)].
simple averag€Al), translates to 2 g\?
aq(X,\")=q(X,\)+O(A?). (A10) (AL13)

Since Eq.(21) is of order A2, approximation(22) leads in
this case tm(A%) accurate results in Eq24).

In general, however, both Eql8) and (22) are applied
to averages more complex than E41) [see Eqgs(15) and
(16)]. These averages can always be expressed in terms
simple averages of the forfAl) or products thereof, for
instance,

(6a(X,x) 8b(X,x))x=(a(x)b(x))x—A(X)B(X),
(A11)

and
(Sa(X,x)sb(X,x)5c(X,x))x
=(a(x)b(x)c(x))x=AX)(b(x)c(x))x—B(X)
X{a(x)c(x))x—C(X)(a(x)b(x))x

+2A(X)B(X)C(X). (A12)

Since approximatior{18) for simple averages gives(A*)
accurate results, it can be applied to each term in the left-
hand side of Eq(A13) to evaluate the product at this level of
ggcuracy. If this is done, and the derivatives in the right-hand
side performed, it is easy to verify that both sides of Eq.
(A13) so evaluated differ in terms of ordey®, that is, ap-
proximation(18) applied to the product of two simple aver-
ages given(A®) accurate results. The same conclusion is
similarly verified for the product of three simple averages,
leading then too(A%) accurate results for both fluctuation
averagegAll) and(A12).

Analogously, using EqA10) for each simple average, it
is immediately verified that EqA10) is also valid for the
product of two or more simple averages, leadingo{a*)
accurate results when approximati@®2) is used in Eq(24).

The accuracy in the final expressions is then limited to the
0(A®) accuracy of approximatiofi8).
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